Skip to main content
Log in

A Dual Functional Conductive Hydrogel Containing Titania@Polypyrrole-Cyclodextrin Hybrid Nanotubes for Capture and Degradation of Toxic Chemical

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

In this study, dual functional conductive hydrogels containing polypyrrole (PPy) nanotubes (NTs) functionalized with beta-cyclodextrin (bCD) and titania (TiO2) were produced and applied for both detection and removal of toxic substances. PPy, a representative conducting polymer was prepared in a form of nanotube (NT) and used for providing electrical conductivity. TiO2 nanoparticles were incorporated into the inside of the PPy NTs during the formation of PPy NTs, acting as a photocatalyst. Subsequently, beta-cyclodextrin (bCD) molecules were introduced as sensing media on the surface of PPy NTs via a simple surface treatment. The resulting TiO2@PPy-bCD hybrid NTs were embedded into agarose matrix to obtain a conductive hydrogel, simultaneously improving compatibility with substrates. The electrical properties of the hydrogel were investigated, showing electrical conductivity of approximately 10−3 S/cm and ohmic I-V relation on Au electrode. The sensing capability for a model analyte compound (methyl paraben, MPRB) down to 10 nM and photocatalytic degradation of methylene blue (MB) were demonstrated effectively. This study can provide important information for upcoming research activities for environmentally benign and toxic free versatile chemical sensors in diverse relevant fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Xiang, C., Jiang, D., Zou, Y., Chu, H., Qiu, S., Zhang, H., Xu, F., Sun, L., Zheng, L.: Ammonia sensor based on polypyrrole–graphene nanocomposite decorated with titania nanoparticles. Ceramics Int. 41, 6432–6438 (2015)

    Article  CAS  Google Scholar 

  2. Ramesan, M.T., Santhi, V., Bahuleyan, B.K., Al-Maghrabi, M.A.: Structural characterization, material properties and sensor application study of in situ polymerized polypyrrole/silver doped titanium dioxide nanocomposites. Mater. Chem. Phys. 211, 343–354 (2018)

    Article  CAS  Google Scholar 

  3. Xiaohui, T., Raskin, J.-P., Lahem, D., Krumpmann, A., Decroly, A., Debliquy, M.: A formaldehyde sensor based on molecularly-imprinted polymer on a TiO2 nanotube array. Sensors 17, 675 (2017)

    Article  Google Scholar 

  4. Mehdinia, A., Shoormeij, Z., Jabbari, A.: Trace determination of lead(II) ions by using a magnetic nanocomposite of the type FeO/TiO/PPy as a sorbent, and FAAS for quantitation. Microchim. Acta 184, 1529–1537 (2017)

    Article  CAS  Google Scholar 

  5. Yu, M., Wu, L., Miao, J., Wei, W., Liu, A., Liu, S.: Titanium dioxide and polypyrrole molecularly imprinted polymer nanocomposites based electrochemical sensor for highly selective detection of p-nonylphenol. Anal. Chim. Acta 1080, 84–94 (2019)

    Article  CAS  Google Scholar 

  6. Bulakhe, R.N., Patil, S.V., Deshmukh, P.R., Shinde, N.M., Lokhande, C.D.: Fabrication and performance of polypyrrole (Ppy)/TiO2 heterojunction for room temperature operated LPG sensor. Sens. Actuat. B Chem. 181, 417–423 (2013)

    Article  CAS  Google Scholar 

  7. Li, X., He, G., Han, Y., Xue, Q., Wu, X., Yang, S.: Magnetic titania-silica composite–Polypyrrole core–shell spheres and their high sensitivity toward hydrogen peroxide as electrochemical sensor. J. Colloid Interface Sci. 387, 39–46 (2012)

    Article  CAS  Google Scholar 

  8. Hamtak, M., Fotouhi, L., Hosseini, M., Reza, G.: Sensitive nonenzymatic electrochemiluminescence determination of hydrogen peroxide in dental products using a polypyrrole/polyluminol/titanium dioxide nanocomposite. Anal. Lett. 52, 633–648 (2019)

    Article  CAS  Google Scholar 

  9. Zhang, T., Ma, N., Ali, A., Wei, Q., Wu, D., Ren, X.: Electrochemical ultrasensitive detection of cardiac troponin I using covalent organic frameworks for signal amplification. Biosens. Bioelect. 119, 176–181 (2018)

    Article  CAS  Google Scholar 

  10. Xie, Y., Zhao, Y.: Electochemical biosensing based on polypyrrole/titania nanotube hybrid. Mater. Sci. Eng. 33, 5028–5035 (2013)

    Article  CAS  Google Scholar 

  11. AL-Mokaram, A., Yahya, R., Abdi, M.M., Ekramul Mahmud, H.N.M.: The development of non-enzymatic glucose biosensors based on electrochemically prepared polypyrrole-chitosan-titanium dioxide nanocomposite films. Nanomater. 7, 129 (2017)

    Article  Google Scholar 

  12. Hwang, Y., Park, J.Y., Kwon, O.S., Joo, S., Lee, C.-S., Bae, J.: Incorporation of hydrogel as a sensing medium for recycle of sensing material in chemical sensors. Appl. Surf. Sci. 429, 258–263 (2018)

    Article  CAS  Google Scholar 

  13. Hwang, Y., Park, J.Y., Lee, C.-S., Kwon, O.S., Park, S.-H., Bae, J.: Surface engineered poly(dimethylsiloxane)/carbon nanotube nanocomposite pad as a flexible platform for chemical sensors. Compos. A 107, 55–60 (2018)

    Article  CAS  Google Scholar 

  14. Park, S.J., Lee, J., Seo, S.E., Kim, K.H., Park, C.S., Lee, S.H., Ban, H.S., Lee, B.D., Song, H.S., Kim, J., Lee, C.-S., Bae, J., Kwon, O.S.: High-performance conducting polymer nanotube-based liquid-ion gated field-effect transistor aptasensor for dopamine exocytosis. Sci. Rep. 10, 3772 (2020)

    Article  CAS  Google Scholar 

  15. Bae, J., Hwang, Y., Ha, J.-H., Kwon, O.S., Jang, A., Kim, H.J., An, J., Lee, C.-S., Park, S.-H.: Versatile chemical sensors using oligosaccharides on cleanable PDMS/graphene hybrids for monitoring environmentally hazardous substances. Appl. Surf. Sci. 507, 145139 (2020)

    Article  CAS  Google Scholar 

  16. Bae, J., Shin, K., Kwon, O.S., Hwang, Y., An, J., Jang, A., Kim, H.J., Lee, C.-S.: A succinct review of refined chemical sensor systems based on conducting polymer–cyclodextrin hybrids. J. Ind. Eng. Chem. 79, 19–28 (2019)

    Article  CAS  Google Scholar 

  17. Li, X., Sun, J., He, G., Jiang, G., Tan, Y., Xue, B.: Macroporous polypyrrole-TiO2 composites with improved photoactivity and electrochemical sensitivity. J. Colloid Interface Sci. 411, 34–40 (2013)

    Article  CAS  Google Scholar 

  18. Luo, Q., Li, X., Wang, D., Wang, Y., An, J.: Photocatalytic activity of polypyrrole/TiO nanocomposites under visible and UV light. J. Mater. Sci. 46, 1646–1654 (2011)

    Article  CAS  Google Scholar 

  19. Sun, L., Shi, Y., Li, B., Li, X., Wang, Y.: Preparation and characterization of polypyrrole/TiO2 nanocomposites by reverse microemulsion polymerization and its photocatalytic activity for the degradation of methyl orange under natural light. Polym. Compos. 34, 1076–1080 (2013)

    Article  CAS  Google Scholar 

  20. He, M.Q., Bao, L.L., Sun, K.Y., Zhao, D.X., Li, W.B., Xia, J.X., Li, H.M.: Synthesis of molecularly imprinted polypyrrole/titanium dioxide nanocomposites and its selective photocatalytic degradation of rhodamine B under visible light irradiation. Express Polym. Lett. 8, 850–861 (2014)

    Article  Google Scholar 

  21. Cao, S., Zhang, H., Song, Y., Zhang, J., Yang, H., Jiang, L., Dan, Y.: Investigation of polypyrrole/polyvinyl alcohol–titanium dioxide composite films for photo-catalytic applications. Appl. Surf. Sci. 342, 55–63 (2015)

    Article  CAS  Google Scholar 

  22. Macedo, E.R., Oliveira, P.S., de Oliveira, H.P.: Synthesis and characterization of branched polypyrrole/titanium dioxide photocatalysts. J. Photochem. Photobio. A Chem. 307, 108–114 (2015)

    Article  Google Scholar 

  23. Park, S.J., Kwon, O.S., Lee, J.E., Jang, J., Yoon, H.: Conducting polymer-based nanohybrid transducers: a potential route to high sensitivity and selectivity sensors. Sensors 14, 3604–3630 (2014)

    Article  CAS  Google Scholar 

  24. Kratofil, K.L., Stjepanović, J., Perlog, M., Krehula, S., Gilja, V., Travas-Sejdic, J., Hrnjak-Murgić, Z.: Conducting polymer polypyrrole and titanium dioxide nanocomposites for photocatalysis of RR45 dye under visible light. Polym. Bull. 76, 1697–1715 (2019)

    Article  Google Scholar 

  25. Ullah, H.H., Tahir, A.A., Mallick, T.K.: Polypyrrole/TiO2 composites for the application of photocatalysis. Sens. Actuat. B Chem. 241, 1161–1169 (2017)

    Article  CAS  Google Scholar 

  26. Gu, Y.-J., Wen, W., Xu, Y., Wu, J.-M.: Pyrrole-regulated precipitation of titania nanorods on polymer fabrics for photocatalytic degradation of trace toluene in air. Appl. Surf. Sci. 434, 1055–1063 (2018)

    Article  CAS  Google Scholar 

  27. Tan, Y., Chen, Y., Mahimwalla, Z., Johnson, M.B., Sharma, T., Brüning, R., Ghandi, K.: Novel synthesis of rutile titanium dioxide–polypyrrole nano composites and their application in hydrogen generation. Syn. Met. 189, 77–85 (2014)

    Article  CAS  Google Scholar 

  28. Ngaboyamahina, E., Cachet, H., Pailleret, A., Sutter, E.M.M.: Photo-assisted electrodeposition of an electrochemically active polypyrrole layer on anatase type titanium dioxide nanotube arrays. Electrochim. Acta 129, 211–221 (2014)

    Article  CAS  Google Scholar 

  29. Arenas, M.C., Rodriguez-Nunez, L.F., Rangel, D., Martinez-Alvarez, O., Martinez-Alonso, C., Castano, V.M.: Simple one-step ultrasonic synthesis of anatase titania/polypyrrole nanocomposites. Ultrasonics Sonochem. 20, 777–784 (2013)

    Article  CAS  Google Scholar 

  30. Ravikiran, Y.T., Vijaya Kumari, S.C.: Analysis of x-ray diffraction pattern and complex plane impedance plot of polypyrrole/titanium dioxide nanocomposite: a simulation study. AIP Conf. Proc. 1536, 49–50 (2013)

    Article  CAS  Google Scholar 

  31. Oliveira, A., Oliveira, H.: Optimization of photocatalytic activity of PPy/TiO nanocomposites. Polym. Bull. 70, 579–591 (2013)

    Article  Google Scholar 

  32. Singh, S.K., Shukla, R.K.: Optical and photoconductivity properties of pure Polypyrrole and titanium dioxide-doped Polypyrrole nanocomposites. Mater. Sci. Semicon. Process. 31, 245–250 (2015)

    Article  CAS  Google Scholar 

  33. de Oliveira, A.H.P., de Oliveira, H.P.: Carbon nanotube/polypyrrole nanofibers core-shell composites decorated with titanium dioxide nanoparticles for supercapacitor electrodes. J. Power Sources 268, 45–49 (2014)

    Article  Google Scholar 

  34. Du, H., Xie, Y., Xia, C., Wang, W., Tian, F., Zhou, Y.: Preparation of a flexible polypyrrole nanoarray and its capacitive performance. Mater. Lett. 132, 417–420 (2014)

    Article  CAS  Google Scholar 

  35. Jiang, L., Lu, X., Xie, C., Wang, G., Zhang, H., Youhong, T.: Flexible, free-standing TiO2−graphene−polypyrrole composite films as electrodes for supercapacitors. J. Phys. Chem. C 119, 3903–3910 (2015)

    Article  CAS  Google Scholar 

  36. Gupta, A., Varshney, S., Goyal, A., Sambyal, P., Kumar Gupta, B., Dhawan, S.K.: Enhanced electromagnetic shielding behaviour of multilayer graphene anchored luminescent TiO2 in PPY matrix. Mater. Lett. 158, 167–169 (2015)

    Article  CAS  Google Scholar 

  37. Yoon, C.-M., Cho, K.H., Jang, Y., Kim, J., Lee, K., Yu, H., Lee, S., Jang, J.: Synthesis and electroresponse activity of porous polypyrrole/silica−titania core/shell nanoparticles. Langmuir 34, 15773–15782 (2018)

    Article  CAS  Google Scholar 

  38. Bae, J., Hur, J.: Synthesis and characterization of thermo-reversible conductive hydrogel toward smart electrodes. Sci. Adv. Mater. 8, 176–179 (2016)

    Article  CAS  Google Scholar 

  39. Bae, J., Hwang, Y., Park, S.-H., Park, S.J., Lee, J., Kim, H.J., Jang, A., Park, S., Kwon, O.S.: An elaborate sensor system based on conducting polymer-oligosaccharides in hydrogel and the formation of inclusion complexes. J. Ind. Eng. Chem (2020). https://doi.org/10.1016/j.jiec.2020.07.023. (In press)

    Article  Google Scholar 

  40. Xuan Dat Mai, N., Bae, J., Kim, I.T., Park, S.-H., Lee, G.-W., Kim, J.H., Lee, D., Son, H.B., Lee, Y.-C., Hur, J.: A recyclable, recoverable, and reformable hybrogel-based smart photocatalyst. Environ. Sci. Nano 4, 955–966 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by National Research Foundation of Korea, Grant Numbers NRF-2019R1F1A1058571. This work was also supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) through Advanced Production Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (318104-3) and KRIBB Initiative Research Program.

Author information

Authors and Affiliations

Authors

Contributions

JB: corresponding, conceptualization, data curation, funding acquisition, investigation, methodology, project admin, supervision, writing draft. SJP: conceptualization, investigation, methodology, writing review editing. D-SS: investigation, writing review editing. JL: investigation, writing draft. SP: investigation. HJK: investigation. OSK: corresponding, conceptualization, funding acquisition, investigation, methodology, project admin, resources, supervision, writing review editing.

Corresponding authors

Correspondence to Joonwon Bae or Oh Seok Kwon.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bae, J., Park, S.J., Shin, DS. et al. A Dual Functional Conductive Hydrogel Containing Titania@Polypyrrole-Cyclodextrin Hybrid Nanotubes for Capture and Degradation of Toxic Chemical. BioChip J 15, 162–170 (2021). https://doi.org/10.1007/s13206-021-00015-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-021-00015-2

Keywords

Navigation