Skip to main content
Log in

The effect of nanoparticle on microdomain alignment in block copolymer thin films under an electric field

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Controlling microdomain structure of block copolymers (BCPs) under electric field has been one of the most challenging research tasks. In this study, we examined the effect of nanoparticles on the microdomain orientations in BCP/nanoparticle thin films under electric field using cross-sectional transmission electron microscopy experiments. Gold and cadmium selenide nanoparticles with a tailored surface property were incorporated to control microdomain orientations in BCP/nanoparticle thin films by varying dielectric constant of one constituting block. It was revealed that the microdomain orientation of BCP/nanoparticle thin films under electric field was suppressed by the introduction of gold nanoparticles. Thus, it can be inferred that gold nanoparticles can show a shielding effect under external electric field. The effect of complementary parameters such as NPs concentration, exposure time, and field strength were also demonstrated. In addition, it was also found that the suppression effect lessened with cadmium selenide nanoparticles having a dipole from the noncentrosymmetric structure. This work can provide fundamental data for understanding of microdomain alignment behavior of BCP/nanoparticle system under electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hamley IW (2004) Introduction to block copolymers. In: Hamley IW (ed) Developments in block copolymer science and technology. Wiley, London

    Chapter  Google Scholar 

  2. Park C, Yoon JS, Thomas EL (2003) Enabling nanotechnology with self assembled block copolymer patterns. Polymer 44:6725–6760

    Article  Google Scholar 

  3. Hamley IW (1998) The physics of block copolymers. Oxford University Press, Oxford

    Google Scholar 

  4. Mansky P, Harrison C, Chaikin PM, Register RA, Yao N (1996) Nanolithographic templates from diblock copolymer thin films. Appl Phys Lett 93:2586

    Article  Google Scholar 

  5. Park M, Harrison C, Chaikin PM, Register RA, Adamson H (1997) Block copolymer lithography: periodic arrays of ~1011 holes in 1 square centimeter. Science 276:1401–1404

    Article  Google Scholar 

  6. De Rosa C, Park C, Thomas EL, Lotz B (2000) Microdomain patterns from directional eutectic solidification and epitaxy. Nature 405:433–437

    Article  Google Scholar 

  7. Kitano H, Akasaka S, Inoue T, Chen F et al (2007) Control of the microdomain orientation in block copolymer thin films with homopolymers for lithographic application. Langmuir 23:6404–6410

    Article  Google Scholar 

  8. Kim BJ, Fredrickson GH, Kramer EJ (2008) Effect of polymer ligand molecular weight on polymer-coated nanoparticle location in block copolymers. Macromolecules 41:436–447

    Article  Google Scholar 

  9. Black CT, Murray CB, Sandstrom RL, Sun SH (2000) Spin-dependent tunneling in self-assembled cobalt-nanocrystal superlattices. Science 290:1131–1134

    Article  Google Scholar 

  10. Buxton GA, Clarke N (2007) Drug diffusion from polymer core–shell nanoparticles. Soft Matter 3:1513–1517

    Article  Google Scholar 

  11. Tseng RJ, Tsai CL, Ma LP, Ouyang JY, Ozkan CS, Yang Y (2006) Digital memory device based on tobacco mosaic virus conjugated with nanoparticles. Nat Nanotechnol 1:72–77

    Article  Google Scholar 

  12. Konstantatos G, Howard I, Fischer A, Hoogland S, Clifford J, Klem E, Levina L, Sargent EH (2006) Ultrasensitive solution-cast quantum dot photodetectors. Nature 442:180–183

    Article  Google Scholar 

  13. Gass J, Poddar P, Almand J, Srinath S, Srikanth H (2006) Superparamagnetic polymer nanocomposites with uniform Fe3O4 nanoparticle dispersions. Adv Funct Mater 16:71–75

    Article  Google Scholar 

  14. Zeng QH, Yu AB, Lu GQ (2008) Multiscale modeling and simulation of polymer nanocomposites. Prog Polym Sci 33:191–269

    Article  Google Scholar 

  15. Ginzburg VV, Qiu F, Paniconi M, Peng G, Jasnow D, Balazs AC (1999) Simulation of hard particles in a phase-separating binary mixture. Phys Rev Lett 82:4026–4029

    Article  Google Scholar 

  16. Yan LT, Popp N, Ghosh SK, Böker A (2010) Self-assembly of Janus nanoparticles in diblock copolymers. ACS Nano 4:913–920

    Article  Google Scholar 

  17. Warren SC, Messina LC, Slaughter LS, Kamperman M, Zhou Q, Gruner SM, DiSalvo FJ, Wiesner U (2008) Ordered mesoporous materials from metal nanoparticle-block copolymer self-assembly. Science 320:1748–1752

    Article  Google Scholar 

  18. Chiu JJ, Kim BJ, Kramer EJ, Pine DJ (2005) Control of nanoparticle location in block copolymers. J Am Chem Soc 127:5036–5037

    Article  Google Scholar 

  19. Deshmukh RD, Liu Y, Composto RJ (2007) Two-dimensional confinement of nanorods in block copolymer domains. Nano Lett 7:3662–3668

    Article  Google Scholar 

  20. Swan JW (1897) Stress and other effects produced in resin and in a viscid compound of resin and oil by electrification. Proc R Soc Lond 62:38

  21. Xu T, Zhu Y, Gido SP, Russell TP (2004) Electric field alignment of symmetric diblock copolymer thin films. Macromolecules 37:2625–2629

    Article  Google Scholar 

  22. Amundson K, Helfand E, Quan X, Smith SD (1993) Alignment of lamellar block copolymer microstructure in an electric field. 1. Alignment kinetics. Macromolecules 26:2698–2703

    Article  Google Scholar 

  23. Onuki A, Fukuda J (1995) Electric field effects and form birefringence in diblock copolymers. Macromolecules 28:8788–8795

    Article  Google Scholar 

  24. Kyrylyuk AV, Zvelindovsky AV, Sevink GJA, Fraaije JGEM (2005) Lamellar alignment of diblock copolymers in an electric field. Macromolecules 35:1473–1476

    Article  Google Scholar 

  25. Schmidt K, Böker A, Zettl H, Schubert F, Hansel H, Fischer F, Weiss TM, Abetz V, Zvelindovsky AV, Sevink GJA, Krausch G (2005) Influence of initial order on the microscopic mechanism of electric field induced alignment of block copolymer microdomains. Langmuir 21:11974–11980

    Article  Google Scholar 

  26. Matsen MW (2006) Electric field alignment in thin films of cylinder-forming diblock copolymer. Macromolecules 39:5512–5520

    Article  Google Scholar 

  27. Sakurai S (2008) Progress in control of microdomain orientation in block copolymers—efficiencies of various external fields. Polymer 49:2781–2796

    Article  Google Scholar 

  28. Gurovich E (1994) On microphase separation of block copolymers in an electric field: four universal classes. Macromolecules 27:7339–7362

    Article  Google Scholar 

  29. Yan LT, Xie XM (2013) Computational modeling and simulation of nanoparticle self-assembly in polymeric systems: structures, properties and external field effects. Prog Polym Sci 38:369–405

    Article  Google Scholar 

  30. Ly DQ, Pinna M, Honda T, Kawakatsu T (2013) Kinetic pathways of sphere-to-cylinder transition in diblock copolymer melt under electric field. J Chem Phys 138:074904

    Article  Google Scholar 

  31. Goldberg-Oppenheimer P, Kabra D, Vignolini S, Hüttner S, Sommer M, Neumann K, Thelakkat M, Steiner U (2013) Hierarchical orientation of crystallinity by block-copolymer patterning and alignment in an electric field. Chem Mater 25:1063–1070

    Article  Google Scholar 

  32. Ruppel M, Pester CW, Langner KM, Sevink GJA, Schoberth HG, Schmidt K, Urban VS, Mays JW, Böker A (2013) Electric field induced selective disordering in lamellar block copolymers. ACS Nano 7:3854–3867

    Article  Google Scholar 

  33. Liedel C, Pester CW, Ruppel M, Lewin C, Pavan MJ, Urban VS, Bösecke P, Böker A (2013) Block copolymer nanocomposites in electric fields: kinetics of alignment. ACS Macro Lett 2:53–58

    Article  Google Scholar 

  34. Böltau M, Walheim S, Mlynek J, Krausch G, Steiner U (1998) Surface-induced structure formation of polymer blends on patterned substrates. Nature 391:877–879

    Article  Google Scholar 

  35. Yan LT, Schoberth HG, Böker A (2009) Large-scale oriented assembly of nanoparticles in diblock copolymer templates under electric fields. Macromol Chem Phys 210:1003–1010

    Article  Google Scholar 

  36. Yan LT, Schoberth HG, Böker A (2010) Lamellar microstructure and dynamic behavior of diblock copolymer/nanoparticle composites under electric fields. Soft Matter 6:5956–5964

    Article  Google Scholar 

  37. Brust M, Walker M, Betell D, Schiffrin DJ, Whyman RJ (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J Chem Soc Chem Commun 801–802

  38. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  Google Scholar 

  39. Stellacci F et al (2007) Divalent metal nanoparticles. Science 315:358–361

    Article  Google Scholar 

  40. Glogowski E, Tangirala R, He JB, Russell TP, Emrick T (2007) Microcapsules of PEGylated gold nanoparticles prepared by fluid–fluid interfacial assembly. Nano Lett 7:389–393

    Article  Google Scholar 

  41. Peng ZA, Peng XG (2002) Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J Am Chem Soc 123:183–184

    Article  Google Scholar 

  42. Peng X, Manna L, Yang W, Wickham J, Scher E, Kadavanich A, Alivisatos AP (2000) Shape control of CdSe nanocrystals. Nature 404:59–61

    Article  Google Scholar 

  43. Gupta S, Zhang Q, Emrick T, Russell TP (2006) “Self-corralling” nanorods under an applied electric field. Nano Lett 6:2066–2069

    Article  Google Scholar 

  44. Ku CC, Liepins R (1987) Electrical properties of polymers: chemical principles. Hanser, Munich

    Google Scholar 

  45. Xu T, Hawker CJ, Russell TP (2003) Interfacial energy effects on the electric field alignment of symmetric diblock copolymers. Macromolecules 36:6172–6178

    Google Scholar 

  46. Olszowka V, Hund M, Kuntermann V, Scherdel S, Tsarkova L, Böker A (2009) Electric field alignment of a block copolymer nanopattern: direct observation of the microscopic mechanism. ACS Nano 5:1091–1096

    Article  Google Scholar 

  47. Bae J (2012) Electrohydrodynamic instabilities of polymer thin films: filler effect. J Ind Eng Chem 18:378–382

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joonwon Bae.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bae, J., Park, S.J., Kwon, O.S. et al. The effect of nanoparticle on microdomain alignment in block copolymer thin films under an electric field. J Mater Sci 49, 4323–4331 (2014). https://doi.org/10.1007/s10853-014-8128-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8128-0

Keywords

Navigation